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Received 8 August 1995

Abstract. We study the path integral for a model with a finite number of degrees of freedom and
two first-class constraints. To account for the constraints, we construct the appropriate projection
operator, and, rather than the resolution of unity, use it at every time slice in the building of the
coherent-state path-integral representation of the propagator. The derivation of the projection
operator leads to the introduction of bicoherent states and is built by integration over properly-
weighted, independent coherent-state bras and kets. The construction of the propagator using
bicoherent states leads to a phase space action, which, in general, is complex and has twice
as many labels as there are in the standard classical phase space action. The imaginary part
of the complex action reduces to a surface term on the classical trajectories. We argue that
the projection operator leads to the correct measure in the path-integral representation of the
propagator. The measure, which is path dependent, is ‘modulated’ by the imaginary part of the
action.

1. Introduction

Problems in classical physics are often conveniently described in terms of more variables
than are required and such problems are said to have constraints. Mechanical systems
with constraints have been studied systematically by Dirac [1]. Constraints are naturally
classified as either first class or second class. First-class constraints are those whose Poisson
brackets with all other constraints vanish on the constraint surface and constraints that are
not first class are second class. In efforts to quantize systems with first-class constraints,
variables referred to as gauge degrees of freedom become a nuisance. In the literature, there
exist several widely accepted methods for path-integral quantization of systems with purely
gauge degrees of freedom [2–6]. Although these schemes for quantization are varied, they
all allow rather unrestricted canonical transformations within a formal phase space path
integral, the validity of which often cannot be substantiated [7].

In this paper, we consider a toy model which has been studied before [8, 9]. The model
has a primary and a secondary constraint, both first class. We quantize the model and,
following Dirac, identify the physical subspace [1] . Then, starting with an orthonormal
basis in this subspace we build a projection operator which we use in the construction of a
coherent-state path-integral representation of the propagator for our model. The projection
operator, which leads to the introduction of bicoherent states, gives us the correct measure
for the path integral and also gives us the desired classical limit.

The paper is organized as follows. In section 2, we introduce the classical and quantum
description of the model and identify its physical subspace. In section 3, which contains
the bulk of the formalism developed here, we construct the projection operator and use
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it to evaluate the propagator for the case of the quadratic potential. We then obtain the
classical limit from this propagator. In section 4, we study the propagator for the quartic
potential. Section 5 discusses the measure obtained for the path-integral representation of
the propagator. The appendix summarizes the main features of path integrals constructed
using bicoherent states.

2. The toy model

We consider the dynamical system described by the Lagrangian

L(x, ẋ, y, ẏ) = 1
2(ẋ − yTx)2 − V (x) (1)

wherex = (x1, x2) a two-dimensional vector, andy are dynamical variables. Also,T = iτ2

is a 2× 2 matrix whereτ2 is a Pauli matrix. As a first step toward quantization we change
to the Hamiltonian formalism. The canonically conjugate momenta to the coordinates are

p = ∂L

∂ẋ
= ẋ − yTx π = ∂L

∂ẏ
= 0 (2)

and the canonical Hamiltonian is

H = 1
2p2 + V (x)+ ypTx. (3)

Thus, we have a mechanical system with one primary constraintπ = 0. We want our
primary constraint to hold at all times, so we require

π̇ = {π,H } = −pTx = −σ = 0 (4)

i.e. we have a secondary constraint,σ = 0. We note thatσ = (p1x2 − p2x1) is just
the generator of rotations in two dimensions. Both constraints in our problem are first
class since{σ, π} = 0. Also, there are no further constraints in the problem because
σ̇ = {σ,H } = 0. Thus, our model which has two first-class constraints has only one
physical degree of freedom which can be identified as follows. Performing the canonical
transformation(x,p) → (r, θ, pr, pθ ), where (r, θ) are polar coordinates and (pr, pθ ) are
momenta conjugate to them respectively, we find that (r, pr ) are gauge invariant and can
be taken as the physical variables.

In the case in which one is interested in the most general physically permissible motion,
one should allow for an arbitrary gauge transformation to be performed while the system
is dynamically evolving in time. Hence, we add to our Hamiltonian the two first-class
constraints multiplied by their corresponding Lagrange multipliers and obtain the extended
Hamiltonian, i.e.

H = 1
2p2 + V (x)+ ypTx + upTx + vπ (5)

whereu and v are Lagrange multipliers [10]. We use the extended Hamiltonian in the
construction of the propagator and, henceforth, will refer to it as just the Hamiltonian
unless otherwise specified.

2.1. Quantum theory

The transition to the quantum description of the system is made by promoting the dynamical
variablesx, p, y, π and the Lagrange multipliersu, v to operators. We will use the same
symbol to represent the classical variables and their corresponding quantum operators since
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the quantity being referred to will be clear from the context. At present, we consider the
harmonic oscillator potentialV (x) = 1

2x2. So, our Hamiltonian is

H = 1
2p2 + 1

2x2 + ypTx + upTx + vπ. (6)

It is useful to express our quantum mechanical problem in a second-quantized representation.
Thus, using creation and annihilation operators, we define

xj = (aj + a
†
j )√

2
pj = (aj − a

†
j )√

2i
j = 1, 2

y = (a3 + a
†
3)√

2
π = (a3 − a

†
3)√

2i
u = (a4 + a

†
4)√

2
v = (a5 + a

†
5)√

2

(7)

and adopt the normal-ordered HamiltonianH =: H : given by

H = a
†
1a1 + a

†
2a2 + i

(a
†
3 + a3)√

2
(a

†
1a2 − a

†
2a1)

+i
(a

†
4 + a4)√

2
(a

†
1a2 − a

†
2a1)+ (a

†
5 + a5)√

2

(a3 − a
†
3)√

2i
(8)

where [ai, a
†
j ] = δij , [ai, aj ] = 0 and i, j = 1, 2, 3, 4, 5. An orthonormal basis for the

Hilbert space under consideration is given by the oscillator occupation number states

(a
†
1)
l

√
l!

(a
†
2)
m

√
m!

(a
†
3)
n

√
n!

(a
†
4)
r

√
r!

(a
†
5)
s

√
s!

|0〉 l, m, n, r, s = 0, 1, 2, . . . (9)

where the vacuum state|0〉 is defined byai |0〉 = 0.
Given the quantization prescription and the Hilbert space indicated above, we would now

like to identify the physical subspace which respects the constraints as quantum operators.
First, consider the subspace in which the operators (x,p) live, which in the occupation
number representation corresponds to the space spanned by the vectors

(a
†
1)
l

√
l!

(a
†
2)
m

√
m!

|0〉 = |l, m〉. (10)

In this subspace, the physical states are singled out by the condition

σ |φ〉 = pTx|φ〉 = i(a†
1a2 − a

†
2a1)|φ〉 = 0. (11)

Thus, independent physical vectors in this subspace are obtained by applying to the vacuum
state|0〉 polynomials ina†

1 anda†
2 that commute withσ = i(a†

1a2 − a
†
2a1). The only such

independent invariant polynomial is (a†2
1 + a

†2
2 ), i.e.

[σ, (a†2
1 + a

†2
2 )] = 0. (12)

Hence, an orthonormal basis in the physical subspace under consideration is given by [9]

|φk〉 = (a
†2
1 + a

†2
2 )

k

2kk!
|0〉 k = 0, 1, 2, . . . . (13)

Notice that these states are energy eigenstates for the canonical Hamiltonian in (3) for a
quadratic potential with eigenvalues 2, 4, 6, . . . in appropriate units.

Second, the physical states in the subspace where (y, π ) operate is similarly determined
by the conditionπ |φ〉 = 0. In the Fock space representation we replace this by the weaker
requirementπ(−)|φ〉 = 0, whereπ(−) is the annihilation part ofπ . Thus, in this subspace
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the physical state is just the vacuum state|0〉. Hence, our physical states invariant under
the two gauge transformations are

|ψk〉 = (a
†2
1 + a

†2
2 )

k

2kk!
|0, 0, 0〉. (14)

These states form an orthonormal basis for the physical space which is a subspace of the
Hilbert space spanned by the vectors in (9).

3. The path integral

The principal object represented by the path integral is the propagator. Before proceeding
to the construction of the propagator for our toy model with two first-class constraints,
we will briefly recall the construction of the propagator in the canonical coherent-state
representation for systems with a single degree of freedom and without constraints. In the
canonical coherent-state representation the propagator is given by

〈z′′| e−iTH|z′〉 =
∫
. . .

∫
〈z′′| e−iεH|zN 〉 . . . 〈z1| e−iεH|z′〉

N∏
n=1

d2zn

π

=
∫

exp

[
i
∫ T

0
[ 1

2(pq̇ − qṗ)−H(p, q)] dt

]
DpDq (15)

whereH(p, q) = 〈p, q|H|p, q〉. The states|z〉 = |p, q〉 are canonical coherent states and
are given by

|z〉 = e−|z|2/2
∞∑
n=0

zn√
n!

|n〉 (16)

wherez = (q+ ip)/
√

2. Also, the state|n〉 is thenth excited harmonic oscillator eigenstate.
In (15) the resolution of unity

1 =
∞∑
n=0

|n〉〈n| =
∫

|z〉〈z|d2z

π
(17)

has been used at every time slice during the construction of the path integral [11].
The principal premise of this paper is that in the construction of the path integral

representation of the propagator for a constrained system, rather than the resolution of
unity, one should use a projection operator at every time slice. The projection operator
ensures that at every infinitesimal time step forward, the evolving state is projected onto
the physical subspace.

3.1. The projection operator

We shall now construct the appropriate projection operator. In the space spanned by the
basis vectors

|l, m, n〉 = (a
†
1)
l(a

†
2)
m(a

†
3)
n

√
l!m!n!

|0, 0, 0〉 (18)

the physical subspace is spanned by the orthonormal vectors

|ψk〉 = (a
†2
1 + a

†2
2 )

k

2kk!
|0, 0, 0〉 (19)
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as already noted. Hence, a projection operator which will project vectors onto the physical
subspace is

P ′ =
∞∑
k=0

|ψk〉〈ψk|. (20)

In order to use this projection operator in a path integral, we will write it as an integral in
a fashion similar to how the unit operator is written as 1= ∫ |z〉〈z| d2z/π . To this end we
note that

al1a
m
2 |γ, δ〉 = γ lδm|γ, δ〉 〈α, β|a†l

1 a
†m
2 = 〈α, β|α∗lβ∗m (21)

where |α, β〉 and |γ, δ〉 are canonical coherent states. We now show how to write our
projection operator in an integral representation:

P ′ =
∞∑
k=0

|ψk〉〈ψk|

=
∞∑
k=0

{∫
d2α d2β d2η

π3
|α, β, η〉〈α, β, η|

}
|ψk〉〈ψk|

{∫
d2γ d2δ d2ξ

π3
|γ, δ, ξ〉〈γ, δ, ξ |

}
(22)

where in the expression above we have multiplied the projection operator by unity on either
side and so we have

P ′ =
∞∑
k=0

∫
d2α d2β d2η d2γ d2δ d2ξ

π6
|α, β, η〉〈γ, δ, ξ |〈α, β, η|ψk〉〈ψk|γ, δ, ξ〉

=
∞∑
k=0

∫
d2α d2β d2η d2γ d2δ d2ξ

π6
|α, β, η〉〈γ, δ, ξ | (α

∗2 + β∗2)k

2kk!

(γ 2 + δ2)k

2kk!

× exp[− 1
2(|α|2 + |β|2 + |η|2 + |γ |2 + |δ|2 + |ξ |2)]. (23)

In arriving at (23) we have used the fact that〈z|0〉 = 〈0|z〉 = exp(− 1
2|z|2). Next, using

the Kronecker delta function in the formδkl = ∫
exp{i(k − l)θ} dθ/2π , we can write our

projection operator as

P ′ =
∞∑

k,l=0

∫
d2α d2β d2η d2γ d2δ d2ξ

π6

dθ

2π
|α, β, η〉〈γ, δ, ξ | (α

∗2 + β∗2)k

2kk!

(γ 2 + δ2)l

2l l!
ei(k−l)θ

×e−1/2(|α|2+|β|2+|η|2+|γ |2+|δ|2+|ξ |2) (24)

and we notice that the summation above can be converted to an exponential. Finally, we
obtain for our projection operator

P ′ =
∫

d2α d2β d2η d2γ d2δ d2ξ

π6

dθ

2π
|α, β, η〉〈γ, δ, ξ |

× exp

[
− 1

2(|α|2 + |β|2 + |η|2 + |γ |2 + |δ|2 + |ξ |2)

+ (α
∗2 + β∗2)

2
eiθ + (γ 2 + δ2)

2
e−iθ

]
. (25)

The form of the projection operator in the above equation suggests the namebicoherent
states, the term bicoherent alluding to the fact that the projection operator is a weighted
integral over independent coherent-state bras and kets.

Going back to the extended Hamiltonian in (6), recall that all primary and secondary
constraints, in the language of Dirac, appear in the Hamiltonian accompanied by their
respective Lagrange multipliers and in the quantization process the Lagrange multipliers are
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also promoted to operators. Thus, to account for the Lagrange multipliers our projection
operator becomes

P =
∫

d2α d2β d2η d2γ d2δ d2ξ d2ρ d2σ

π8

dθ

2π
|α, β, η, ρ, σ 〉〈γ, δ, ξ, ρ, σ |

× exp

[
− 1

2(|α|2 + |β|2 + |η|2 + |γ |2 + |δ|2 + |ξ |2)+ (α∗2 + β∗2)

2

×eiθ + (γ 2 + δ2)

2
e−iθ

]
(26)

where in the expression abovea4|α, β, η, ρ, σ 〉 = ρ|α, β, η, ρ, σ 〉 and a5|α, β, η, ρ, σ 〉 =
σ |α, β, η, ρ, σ 〉. One can easily verify that the operatorP satisfies the two defining
properties of a projection operator, namelyP † = P andP 2 = P .

We will use the projection operator in (26) in the construction of the path-integral
representation of the propagator in the next subsection. At this point, however, the interested
reader may want to digress to the appendix where we discuss the salient features of path
integrals constructed using bicoherent states.

3.2. The propagator

We are now equipped with the necessary tools to derive the path-integral representation
of the propagator. We will calculate the matrix element of the evolution operator between
canonical coherent states, i.e.〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉. According to our
premise, the propagator is

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
= lim

N→∞
〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iεHPN e−iεHPN−1 e−iεH

. . . P1 e−iεH|α′, β ′, η′, ρ ′, σ ′〉 (27)

where at each time slice we have inserted

Pn =
∫

d2αn d2βn d2ηn d2γn d2δn d2ξn d2ρn d2σn

π8

dθn
2π

|αn, βn, ηn, ρn, σn〉〈γn, δn, ξn, ρn, σn|

× exp

[
− 1

2(|αn|2 + |βn|2 + |ηn|2 + |γn|2 + |δn|2 + |ξn|2)

+ (α
∗2
n + β∗2

n )

2
eiθn + (γ 2

n + δ2
n)

2
e−iθn

]
(28)

the projection operator in (26) with(N + 1)ε = T and n = 1, 2, . . . , N . Although for
many problems one application of the projection operator would be adequate, the projection
operator is used at every time slice to account for models in which the Hamiltonian and
the time evolution are not gauge invariant. For such models a physical state would be
mapped, by the Schrödinger equation, onto a state that fails to be gauge invariant. Thus,
the propagator is

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
= lim

N→∞

∫
. . .

∫ N∏
n=0

〈γn+1, δn+1, ξn+1, ρn+1, σn+1| e−iεH|αn, βn, ηn, ρn, σn〉

×
N∏
n=1

dµ′′
n (29)
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with the measure at each time slice being

dµ′′
n = d2αn d2βn d2ηn d2γn d2δn d2ξn d2ρn d2σn

π8

dθn
2π

× exp

[
− 1

2(|αn|2 + |βn|2 + |ηn|2 + |γn|2 + |δn|2 + |ξn|2)

+ (α
∗2
n + β∗2

n )

2
eiθn + (γ 2

n + δ2
n)

2
e−iθn

]
(30)

and the boundary conditions given by

(γN+1, δN+1, ξN+1, ρN+1, σN+1) = (α′′, β ′′, η′′, ρ ′′, σ ′′)
(α0, β0, η0, ρ0, σ0) = (α′, β ′, η′, ρ ′, σ ′).

(31)

For smallε, we have, to orderε,

〈γn+1, δn+1, ξn+1, ρn+1, σn+1| e−iεH|αn, βn, ηn, ρn, σn〉
' 〈γn+1, δn+1, ξn+1, ρn+1, σn+1|[1 − iεH]|αn, βn, ηn, ρn, σn〉
= 〈γn+1, δn+1, ξn+1, ρn+1, σn+1|αn, βn, ηn, ρn, σn〉[1 − iεHn+1,n] (32)

where in the expression above

Hn+1,n = 〈γn+1, δn+1, ξn+1, ρn+1, σn+1|H|αn, βn, ηn, ρn, σn〉
〈γn+1, δn+1, ξn+1, ρn+1, σn+1|αn, βn, ηn, ρn, σn〉 . (33)

Thus, using the fact that [1− iεHn+1,n] ' e−iεHn+1,n we are led to the following expression,
provided the integrals exist, for the propagator:

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
= lim

N→∞

∫
. . .

∫ N∏
n=0

〈γn+1, δn+1, ξn+1, ρn+1, σn+1|αn, βn, ηn, ρn, σn〉

×e−iεHn+1,n

N∏
n=1

dµ′′
n. (34)

The canonical coherent-state overlap at each time slice in the above expression is

〈γn+1, δn+1, ξn+1, ρn+1, σn+1|αn, βn, ηn, ρn, σn〉
= exp[γ ∗

n+1αn + δ∗
n+1βn + ξ ∗

n+1ηn + ρ∗
n+1ρn + σ ∗

n+1σn]
× exp[− 1

2(|γn+1|2 + |δn+1|2 + |ξn+1|2 + |ρn+1|2 + |σn+1|2
+|αn|2 + |βn|2 + |ηn|2 + |ρn|2 + |σn|2)] (35)

and we notice that the factor

exp[− 1
2(|γn+1|2 + |δn+1|2 + |ξn+1|2 + |ρn+1|2 + |σn+1|2

+|αn|2 + |βn|2 + |ηn|2 + |ρn|2 + |σn|2)]
except at the endpoints, can be absorbed in the measure dµ′′

n. Hence, our propagator
becomes

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
= lim

N→∞
exp[− 1

2(|α′′|2 + |β ′′|2 + |η′′|2 + |ρ ′′|2 + |σ ′′|2 + |α′|2

+|β ′|2 + |η′|2 + |ρ ′|2 + |σ ′|2)]
∫
. . .

∫
exp

[ N∑
n=0

(γ ∗
n+1αn + δ∗

n+1βn + ξ ∗
n+1ηn

+ρ∗
n+1ρn + σ ∗

n+1σn − iεHn+1,n)

] N∏
n=1

dµ′
n (36)
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where the overall factor arose from the endpoints of the term absorbed in the measure,
which at each time slice has changed slightly and is now given by

dµ′
n = d2αn d2βn d2ηn d2γn d2δn d2ξn d2ρn d2σn

π8

dθn
2π

× exp

[
− (|αn|2 + |βn|2 + |ηn|2 + |γn|2 + |δn|2 + |ξn|2 + |ρn|2 + |σn|2)

+ (α
∗2
n + β∗2

n )

2
eiθn + (γ 2

n + δ2
n)

2
e−iθn

]
. (37)

Our goal is to express the right-hand side of (36) as a path integral and in preparation
towards this objective we rewrite part of the exponent in the integrand of this equation as
follows:

N∑
n=0

[γ ∗
n+1αn + δ∗

n+1βn + ξ ∗
n+1ηn + ρ∗

n+1ρn + σ ∗
n+1σn]

=
N∑
n=0

1
2{(γ ∗

n+1 − γ ∗
n )αn − γ ∗

n+1(αn+1 − αn)+ (δ∗
n+1 − δ∗

n)βn

−δ∗
n+1(βn+1 − βn)+ (ξ ∗

n+1 − ξ ∗
n )ηn − ξ ∗

n+1(ηn+1 − ηn)+ (ρ∗
n+1 − ρ∗

n)ρn

−ρ∗
n+1(ρn+1 − ρn)+ (σ ∗

n+1 − σ ∗
n )σn − σ ∗

n+1(σn+1 − σn)}

+
N∑
n=0

1
2{γ ∗

n αn + γ ∗
n+1αn+1 + δ∗

nβn + δ∗
n+1βn+1 + ξ ∗

n ηn + ξ ∗
n+1ηn+1

+ρ∗
nρn + ρ∗

n+1ρn+1 + σ ∗
n σn + σ ∗

n+1σn+1}. (38)

In the equation above, the termsγ0, δ0, ξ0, αN+1, βN+1 andηN+1 have not yet been defined.
The factors containing these terms cancel, and so these terms can take on arbitrary values
and are at our disposal. We shall assign them the following values:(γ0, δ0, ξ0) = (α′, β ′, η′)
and (αN+1, βN+1, ηN+1) = (α′′, β ′′, η′′). The choice of these special values will become
clear presently. Going back to (38), we notice the second term on the right-hand side of
this equation can be absorbed in the measure, so our propagator can be written as

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉

= lim
N→∞

∫
. . .

∫
exp

{ N∑
n=0

( 1
2[(γ ∗

n+1 − γ ∗
n )αn − γ ∗

n+1(αn+1 − αn)

+(δ∗
n+1 − δ∗

n)βn − δ∗
n+1(βn+1 − βn)+ (ξ ∗

n+1 − ξ ∗
n )ηn − ξ ∗

n+1(ηn+1 − ηn)

+(ρ∗
n+1 − ρ∗

n)ρn − ρ∗
n+1(ρn+1 − ρn)+ (σ ∗

n+1 − σ ∗
n )σn − σ ∗

n+1(σn+1 − σn)]

−iεHn+1,n)

} N∏
n=1

dµn (39)

where the measure at each time slice has changed again and is now

dµn = d2αn d2βn d2ηn d2γn d2δn d2ξn d2ρn d2σn

π8

dθn
2π

× exp

[
− (|αn|2 + |βn|2 + |ηn|2 + |γn|2 + |δn|2 + |ξn|2)+ (α∗2

n + β∗2
n )

2
eiθn

+ (γ
2
n + δ2

n)

2
e−iθn + γ ∗

n αn + δ∗
nβn + ξ ∗

n ηn

]
. (40)
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The overall factor got cancelled by the endpoints of the new term absorbed in the measure.
Now, interchanging the order of the limit and the integration in (39) we write for the
propagator, in a formal way, the form it takes over continuous and differentiable paths as

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
=

∫
exp

[
i
∫ T

0
{ i

2(γ
∗α̇ − γ̇ ∗α + δ∗β̇ − δ̇∗β + ξ ∗η̇ − ξ̇ ∗η

+ρ∗ρ̇ − ρ̇∗ρ + σ ∗σ̇ − σ̇ ∗σ)− 〈H〉} dt

]
Dµ (41)

whereDµ = ∏
n dµn, and〈H〉 in the expression above is given by

〈H〉 = 〈γ, δ, ξ, ρ, σ |H|α, β, η, ρ, σ 〉
〈γ, δ, ξ, ρ, α|α, β, η, ρ, σ 〉

= γ ∗α + δ∗β + i
(ξ ∗ + η)√

2
(γ ∗β − δ∗α)+ i

(ρ∗ + ρ)√
2

(γ ∗β − δ∗α)+ (σ ∗ + σ)√
2

(η − ξ ∗)√
2i
(42)

for the HamiltonianH in (8). Hence, according to (41) our phase space action for continuous
and differentiable paths is

S =
∫ T

0

{ (
i

2

)
[γ ∗α̇ − γ̇ ∗α + δ∗β̇ − δ̇∗β + ξ ∗η̇ − ξ̇∗η + ρ∗ρ̇ − ρ̇∗ρ + σ ∗σ̇ − σ̇ ∗σ ]

−
[
γ ∗α + δ∗β + i

(ξ ∗ + η)√
2

(γ ∗β − δ∗α)+ i
(ρ∗ + ρ)√

2
(γ ∗β − δ∗α)

+ (σ
∗ + σ)√

2

(η − ξ ∗)√
2i

]}
dt (43)

with the following boundary conditions:

(α(0), β(0), η(0), ρ(0), σ (0)) = (γ (0), δ(0), ξ(0), ρ(0), σ (0)) = (α′, β ′, η′, ρ ′, σ ′)
(α(T ), β(T ), η(T ), ρ(T ), σ (T )) = (γ (T ), δ(T ), ξ(T ), ρ(T ), σ (T ))

= (α′′, β ′′, η′′, ρ ′′, σ ′′). (44)

3.3. The classical limit

We will now study the classical equations of motion obtained from our phase space action.
However, before we do so, we add to our action a total time derivative which of course
will not effect the equations of motion and write it as

S =
∫ T

0

{
i[γ ∗α̇ + δ∗β̇ + ξ ∗η̇ + ρ∗ρ̇ + σ ∗σ̇ ] −

[
γ ∗α + δ∗β + i

(ξ ∗ + η)√
2

(γ ∗β − δ∗α)

+i
(ρ∗ + ρ)√

2
(γ ∗β − δ∗α)+ (σ ∗ + σ)√

2

(η − ξ ∗)√
2i

]}
dt. (45)

Notice our action is generally complex, i.e.S = S1 + iS2. Varying S with respect toα, β,
η, γ ∗, δ∗, ξ ∗, ρ∗ andσ ∗ while keeping their endpoints fixed we get the following equations
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of motion:

α̇ = α

i
+ (ξ ∗ + η)√

2
β + (ρ∗ + ρ)√

2
β γ̇ = γ

i
+ (ξ + η∗)√

2
δ + (ρ∗ + ρ)√

2
δ

β̇ = β

i
− (ξ ∗ + η)√

2
α − (ρ∗ + ρ)√

2
α δ̇ = δ

i
− (ξ + η∗)√

2
γ − (ρ∗ + ρ)√

2
γ

η̇ = (γ ∗β − δ∗α)√
2

+ (σ ∗ + σ)

2
ξ̇ = (α∗δ − β∗γ )√

2
+ (σ ∗ + σ)

2

ρ̇ = (γ ∗β − δ∗α)√
2

σ̇ = (ξ ∗ − η)

2
.

(46)

Now, consider the pathsα(t) andγ (t); using the boundary conditions (44) and the evolution
equations (46) we find that

α(0) = γ (0) = α′ α̇(0) = γ̇ (0) = α′

i
+ (η′∗ + η′)√

2
β ′ + (ρ ′∗ + ρ ′)√

2
β ′. (47)

These are sufficient conditions forα(t) = γ (t), i.e. they evolve along identical paths. One
can easily check that the pairs of paths (β(t), δ(t)) and (η(t), ξ(t)) also start off with the
same initial conditions and so we haveβ(t) = δ(t) andη(t) = ξ(t). We will take up the
equations forρ andσ later; these equations determine the Lagrange multipliers.

To further our study of the classical equations let us define the complex quantitiesα,
β, η, γ , δ, ξ , ρ andσ as follows:

α = (q1 + ip1)√
2

β = (q2 + ip2)√
2

η = (q3 + ip3)√
2

γ = (q4 + ip4)√
2

δ = (q5 + ip5)√
2

ξ = (q6 + ip6)√
2

ρ = (q7 + ip7)√
2

σ = (q8 + ip8)√
2

.

(48)

Notice that (α(t), β(t), η(t)) = (γ (t), δ(t), ξ(t)) implies (q1(t), p1(t), q2(t), p2(t), q3(t),
p3(t)) = (q4(t), p4(t), q5(t), p5(t), q6(t), p6(t)). Using this fact and the defini-
tions in (48) we write the evolution equations (46) in terms of the variables
(q1, p1, q2, p2, q3, p3, q7, p7, q8, p8) as follows:

q̇1 = p1 + (q3 + q7)q2 ṗ1 = −q1 + (q3 + q7)p2 q̇2 = p2 − (q3 + q7)q1

ṗ2 = −q2 − (q3 + q7)p1 q̇3 = q8 ṗ3 = (p2q1 − p1q2) q̇7 = 0

ṗ7 = (p2q1 − p1q2) q̇8 = 0 ṗ8 = −p3. (49)

In order to compare the above equations of motion with those for the Hamiltonian
H = (k2/2) + (x2/2) + ykTx + λkTx + ζπ we introduce a slightly extended classical
phase space actionS ′, which will give us classical equations of motion in one-to-one
correspondence with the equations in (49). The extended action is

S ′ =
∫ T

0

{
[k1ẋ1 + k2ẋ2 + πẏ + pλλ̇+ pζ ζ̇ ] −

[
k2

2
+ x2

2
+ ykTx + λkTx + ζπ

]}
dt

(50)

where (λ, ζ ) are Lagrange multipliers and (pλ, pζ ) are their respective conjugate momenta.
The evolution equations obtained from the actionS ′ are

ẋ1 = k1 + (y + λ)x2 k̇1 = −x1 + (y + λ)k2 ẋ2 = k2 − (y + λ)x1

k̇2 = −x2 − (y + λ)k1 ẏ = ζ π̇ = (x1k2 − k1x2) λ̇ = 0

ṗλ = (x1k2 − k1x2) ζ̇ = 0 ṗζ = −π. (51)
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Comparing equations in (49) and (51) we see that with the identification

(q1, p1, q2, p2, q3, p3, q7, p7, q8, p8) ↔ (x1, k1, x2, k2, x3, k3, λ, pλ, ζ, pζ ) (52)

the two sets of equations are the same. Thus, we conclude that the action obtained from our
quantum propagator gives us the desired classical evolution equations and hence the right
classical limit.

We will now note two interesting features about the classical limit of the formalism
developed here. First, substituting the definitions (48) in our complex actionS = S1 + iS2

in (45), we obtain for the real part of our action

S1 = 1
2

∫ T

0
{[(p4q̇1 − q4ṗ1)+ (p5q̇2 − q5ṗ2)+ (p6q̇3 − q6ṗ3)+ (p7q̇7 − q7ṗ7)

+(p8q̇8 − q8ṗ8)] − [(q4q1 + p4p1)+ (q5q2 + p5p2)] − q8(p3 + p6)

+ 1
2(p6 − p3)[(q5q1 + p5p1)− (q4q2 + p4p2)]

+ 1
2(q6 + q3)[(p5q1 − q5p1)− (p4q2 − q4p2)]

+q7[(p5q1 − q5p1)− (p4q2 − q4p2)]} dt (53)

while the imaginary part of our complex action is given by

S2 = 1
2

∫ T

0
{[q4q̇1 + p4ṗ1 + q5q̇2 + p5ṗ2 + q6q̇3 + p6ṗ3 + q7q̇7 + p7ṗ7 + q8q̇8 + p8ṗ8]

+[(p4q1 − q4p1)+ (p5q2 − q5p2)] + q8(q3 − q6)

− 1
2(q6 + q3)[(q4q2 + p4p2)− (q5q1 + p5p1)] − 1

2(p6 − p3)[(p5q1 − q5p1)

−(p4q2 − q4p2)] − q7[(q4q2 + p4p2)− (q5q1 + p5p1)]} dt. (54)

ExtremizingS1 andS2 in equations (53) and (54), respectively, while keeping the endpoints
of the paths in them fixed, we can obtain equations of motion for the dynamical variables
(q1, p1, q2, p2, q3, p3, q4, p4, q5, p5, q6, p6). We find that for each of these variables the
evolution equations obtained fromS1 is identical to the one obtained fromS2. The second
interesting fact is the following. We saw that on the classical trajectories(α(t), β(t), η(t)) =
(γ (t), δ(t), ξ(t)), which is equivalently stated as(q1(t), p1(t), q2(t), p2(t), q3(t), p3(t)) =
(q4(t), p4(t), q5(t), p5(t), q6(t), p6(t)). Substituting this fact in (53) forS1 we find that, up
to a total derivative,S1 on the classical trajectories reduces to

S1 →
∫ T

0
{[p1q̇1 + p2q̇2 + p3q̇3 + p7q̇7 + p8q̇8] − 1

2(q
2
1 + p2

1)− 1
2(q

2
2 + p2

2)

−q3(p1q2 − q1p2)− q7(p1q2 − q1p2)− q8p3]} dt (55)

exactly the standard classical phase space action in (50). The imaginary partS2 of the action
with the above substitution becomes

S2 → 1
2

∫ T

0
[q1q̇1 + p1ṗ1 + q2q̇2 + p2ṗ2 + q3q̇3 + p3ṗ3 + q7q̇7 + p7ṗ7 + q8q̇8 + p8ṗ8] dt

(56)

a surface term. SoS2 on the classical trajectories gives rise to only an overall ‘phase factor’
in the propagator.

3.4. The constraint hypersurface

Here we study the restrictions on the states over which the matrix element of the evolution
operator is evaluated in the propagator. Consider the following equations from the set (49):

q̇3 = q8 ṗ3 = (p2q1 − p1q2) q̇7 = 0
ṗ7 = (p2q1 − p1q2) q̇8 = 0 ṗ8 = −p3. (57)
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In the classical description of the model we are studying we had the two constraintsπ = 0
andpTx = (p1x2 − p2x1) = 0. So in (57) we wantp3 = π = 0 andṗ3 = ṗ7 = 0. Thus,
the solutions to these equations are

q8 = c1 p8 = c2 q7 = c3 p7 = c4 q3 = c1t + c5 p3 = 0 (58)

wherec1, c2, c3, c4 andc5 are real constants which are determined by the particular classical
solution one is interested in. Also note thatṗ3(t) = (p2q1−p1q2) = 0 implies, in particular,
ṗ3(0) = 2(α′

Rβ
′
I −α′

Iβ
′
R) = 0 andṗ3(T ) = 2(α′′

Rβ
′′
I −α′′

I β
′′
R) = 0, where (αR, βR) and (αI, βI )

are the real and imaginary parts of (α, β), respectively. These restrictions on (α′, β ′) and
(α′′, β ′′) can be stated alternatively as

(α′∗β ′ − α′β ′∗) = 0 (α′′∗β ′′ − α′′β ′′∗) = 0. (59)

Thus, in our propagator the states|α′, β ′, η′, ρ ′, σ ′〉 and|α′′, β ′′, η′′, ρ ′′, σ ′′〉 are not arbitrary
but must be restricted, as discussed above, to ensure that the system remains on the constraint
hypersurface in the classical limit. Hence, our propagator is

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
=

〈
α′′, β ′′,

c1T + c5√
2

,
c3 + ic4√

2
,
c1 + ic2√

2

∣∣∣∣ e−iTH
∣∣∣∣α′, β ′,

c5√
2
,
c3+ic4√

2
,
c1+ic2√

2

〉
(60)

where (α′, β ′) and (α′′, β ′′) are restricted as noted in (59).

4. The quartic potential

For completeness we shall consider the quartic potentialV (x) = 1
4(x

2)2 and show that we
again obtain the correct classical limit by following the quantization procedure outlined in
this paper. The Hamiltonian now isH = 1

2p2 + 1
4(x

2)2 + ypTx + upTx + vπ . In the
second-quantized notation the normal-ordered form of our Hamiltonian is

H =: (− 1
4)[(a1 − a

†
1)

2 + (a2 − a
†
2)

2] + 1
16[(a1 + a

†
1)

2 + (a2 + a
†
2)

2]2

+i
(a3 + a

†
3)√

2
(a

†
1a2 − a

†
2a1)+ i

(a4 + a
†
4)√

2
(a

†
1a2 − a

†
2a1)

+ (a5 + a
†
5)√

2

(a3 − a
†
3)√

2i
: . (61)

The propagator for canonical coherent states is again

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
= lim

n→∞〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iεHPN e−iεH . . . P1 e−iεH|α′, β ′, η′; , ρ ′, σ ′〉 (62)

wherePn is the projection operator in (26). Interchanging the order of the limit and the
integration as usual we formally write the propagator as

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉 =
∫

eiSDµ (63)

where the action, which is complex, is given for continuous and differentiable paths by

S =
∫ T

0

{
i[γ ∗α̇ + δ∗β̇ + ξ ∗η̇ + ρ∗ρ̇ + σ ∗σ̇ ] + 1

4[(α − γ ∗)2 + (β − δ∗)2]

− 1
16[(α + γ ∗)2 + (β + δ∗)2]2 − i

[
(ξ ∗ + η)√

2
+ (ρ∗ + ρ)√

2

]
(γ ∗β − δ∗α)

− (σ
∗ + σ)√

2

(η − ξ ∗)√
2i

}
dt (64)
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with boundary conditions specified in (44). ExtremizingS we obtain the following equations
of motion; variation with respect toγ ∗ andα lead to

α̇ = (α − γ ∗)
2i

+ 1

4i
(α + γ ∗)[(α + γ ∗)2 + (β + δ∗)2] + β√

2
[(ξ ∗ + η)+ (ρ∗ + ρ)]

γ̇ = (γ − α∗)
2i

+ 1

4i
(γ + α∗)[(γ + α∗)2 + (δ + β∗)2] + δ√

2
[(ξ + η∗)+ (ρ∗ + ρ)]

(65)

variation with respect toδ∗ andβ leads to

β̇ = (β − δ∗)
2i

+ 1

4i
(β + δ∗)[(α + γ ∗)2 + (β + δ∗)2] − α√

2
[(ξ ∗ + η)+ (ρ∗ + ρ)]

δ̇ = (δ − β∗)
2i

+ 1

4i
(δ + β∗)[(γ + α∗)2 + (δ + β∗)2] − γ√

2
[(ξ + η∗)+ (ρ∗ + ρ)]

(66)

and finally variation with respect toξ ∗ andη lead to

η̇ = (γ ∗β − δ∗α)√
2

+ (σ ∗ + σ)

2
ξ̇ = (α∗δ − β∗γ )√

2
+ (σ ∗ + σ)

2
. (67)

Next, consider the trajectoriesα(t) and γ (t); using (65) and the boundary conditions in
(44) we find that for these paths

α(0) = γ (0) = α′

α̇(0) = γ̇ (0) =
{
(α′ − α′∗)

2i
+ (α′ + α′∗)

4i
[(α′ + α′∗)2 + (β ′ + β ′∗)2]

+ β ′
√

2
[(η′∗ + η′)+ (ρ ′∗ + ρ ′)]

}
. (68)

They have identical initial conditions and hence evolve along the same paths, i.e.α(t) =
γ (t). Similarly it can be easily verified thatβ(t) = δ(t) andη(t) = ξ(t). So using the fact
that (α(t), β(t), η(t)) = (γ (t), δ(t), ξ(t)) implies (q1(t), p1(t), q2(t), p2(t), q3(t), p3(t)) =
(q4(t), p4(t), q5(t), p5(t), q6(t), p6(t)) and the definitions in (48), we can write the evolution
equations (65)–(67) in terms of the variables (q1, p1, q2, p2, q3, p3, q7, p7, q8, p8,) and
obtain the following equations:

q̇1 = p1 + q2(q3 + q7) q̇2 = p2 − q1(q3 + q7) ṗ7 = (q1p2 − q2p1)

ṗ1 = −q1(q
2
1 + q2

2)+ p2(q3 + q7) ṗ3 = (q1p2 − q2p1) q̇8 = 0

ṗ8 = −p3 ṗ2 = −q2(q
2
1 + q2

2)− p1(q3 + q7) q̇3 = 0 q̇7 = 0.

(69)

These are exactly the equations one would get from the classical phase space action

S ′ =
∫ T

0

{
[k1ẋ1 + k2ẋ2 + πẏ + pλλ̇+ pζ ζ̇ ]

−
[
k2

2
+ 1

4
(x2)2 + ykTx + λkTx + ζπ

] }
dt (70)

if, as before, one makes the identification

(q1, p1, q2, p2, q3, p3, q7, p7, q8, p8) ↔ (x1, k1, x2, k2, x3, k3, λ, pλ, ζ, pζ ). (71)

Hence, we see again that the action obtained from the quantum propagator gives us the
desired classical equations of motion.
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Now, let us substitute(α(t), β(t), η(t)) = (γ (t), δ(t), ξ(t)) and the definitions (48) in
(64). One can obtain the real and imaginary parts of the action evaluated on the classical
trajectories. We obtain for the real part, up to a total derivative,

S1 →
∫ T

0
{[p1q̇1 + p2q̇2 + p3q̇3 + p7q̇7 + p8q̇8] − 1

2(p
2
1 + p2

2)− 1
4(q

2
1 + q2

2)
2

−(q3 + q7)(p1q2 − q1p2)− q8p3} dt (72)

just the classical phase space action of equation (70). The imaginary part reduces to

S2 → 1

2

∫ T

0
[q1q̇1 + p1ṗ1 + q2q̇2 + p2ṗ2 + q3q̇3 + p3ṗ3 + q7q̇7

+p7ṗ7 + q8q̇8 + p8ṗ8] dt (73)

a surface term. Once again, we find that the complex action obtained from the quantum
propagator gives us the correct classical evolution equations and when evaluated on the
classical trajectories its real part is exactly equal to the classical phase space action evaluated
on the same paths. The imaginary part along these paths is a surface term.

5. The measure

We would now like to make the point that the procedure developed here for constructing
the path integral for the propagator is merely a recipe for obtaining the correct measure.
We begin by noting that for a system with three dynamical degrees of freedom the unit
operator is given by

1 =
∫

d2z1 d2z2 d2z3

π3
|z1, z2, z3〉〈z1, z2, z3|. (74)

However, the unit operator can also be written as

1 =
{ ∫

d2z1 d2z2 d2z3

π3
|z1, z2, z3〉〈z1, z2, z3|

}{ ∫
d2z4 d2z5 d2z6

π3
|z4, z5, z6〉〈z4, z5, z6|

}
=

∫
d2z1 d2z2 d2z3

π3

d2z4 d2z5 d2z6

π3
|z1, z2, z3〉〈z4, z5, z6|

× exp[− 1
2(|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 + |z6|2)+ z∗

1z4 + z∗
2z5 + z∗

3z6] (75)

an integral over bicoherent states. So for the HamiltonianH = 1
2p2 + V (x) + ypTx +

upTx + vπ we are studying here, we could have written the unit operator as

1 =
∫

d2α d2β d2η d2γ d2δ d2ξ d2ρ d2σ

π8
|α, β, η, ρ, σ 〉〈γ, δ, ξ, ρ, σ |

× exp[− 1
2(|α|2 + |β|2 + |η|2 + |γ |2 + |δ|2 + |ξ |2)+ α∗γ + β∗δ + η∗ξ ]. (76)

Comparing this to the projection operator in (26) for our constrained system, which we
reproduce below for convenience,

P =
∫

d2α d2β d2η d2γ d2δ d2ξ d2ρ d2σ

π8

dθ

2π
|α, β, η, ρ, σ 〉〈γ, δ, ξ, ρ, σ |

× exp

[
− 1

2(|α|2 + |β|2 + |η|2 + |γ |2 + |δ|2 + |ξ |2)

+ (α
∗2 + β∗2)

2
eiθ + (γ 2 + δ2)

2
e−iθ

]
(77)
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we see that the only difference between the projection operator and the unit operator is
the measure over which the bicoherent states are integrated. Recall now the expression we
obtained for the propagator using this projection operator at every time slice:

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
=

∫
exp

[
i
∫ T

0
{i(γ ∗α̇ + δ∗β̇ + ξ ∗η̇ + ρ∗ρ̇ + σ ∗σ̇ )− 〈H〉}

]
Dµ (78)

where the discrete form of the measure is given by

Dµ =
∏
n

{
d2αn d2βn d2ηn d2γn d2δn d2ξn d2ρn d2σn

π8

dθn
2π

× exp

[
− (|αn|2 + |βn|2 + |ηn|2 + |γn|2 + |δn|2 + |ξn|2)+ (α∗2

n + β∗2
n )

2
eiθn

+ (γ
2
n + δ2

n)

2
e−iθn + γ ∗

n αn + δ∗
nβn + ξ ∗

n ηn

]}
. (79)

On the other hand had we used the resolution of unity as written in (76) instead, the
expression for our propagator would have been

〈α′′, β ′′, η′′, ρ ′′, σ ′′| e−iTH|α′, β ′, η′, ρ ′, σ ′〉
=

∫
exp

[
i
∫ T

0
{i(γ ∗α̇ + δ∗β̇ + ξ ∗η̇ + ρ∗ρ̇ + σ ∗σ̇ )− 〈H〉}

]
Dµunit (80)

and the measure would be

Dµunit =
∏
n

{
d2αn d2βn d2ηn d2γn d2δn d2ξn d2ρn d2σn

π8

× exp[−(|αn|2 + |βn|2 + |ηn|2 + |γn|2 + |δn|2 + |ξn|2)
+α∗

nγn + β∗
nδn + η∗

nξn + γ ∗
n αn + δ∗

nβn + ξ ∗
n ηn]

}
. (81)

So we see that both procedures would have led to the same action, over continuous and
differentiable paths, but with quite different measures! Since the actions are the same they
would yield identical classical equations of motion, but the different measures would give
different spectrums to the quantization, only one of them being correct, of course.

It must be noted that a general operator admits a bicoherent state representation
according to

O =
∫

|α〉〈α|O|β〉〈β|d2α d2β

π2
. (82)

Such operators have been dealt with, for example, by Glauber [12]. What is novel in the
present paper is the use of such representations in path-integral constructions for which, in
all previous coherent-state applications, only weighted coherent-state projection operators
have been used.

6. Discussion and conclusions

The formalism surrounding the general theory of coherent states is exceptionally rich. In
this paper, we have constructed the projection operator, equation (26), for a system with two
first-class constraints, the projection operator being written as a properly-weighted integral
over independent bras and kets, which were calledbicoherent states. As the quantum states
for the system evolve in time, recall equation (27), the projection operator projects these
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states at each infinitesimal time step of their evolution onto the physical subspace determined
by the constraints on the system. The use of this projection operator leads to the correct
measure for the path-integral representation of the propagator as discussed in section 5.
The action obtained from a path-integral construction of the propagator using bicoherent
states, in general, is complex. Also, the measure obtained from such a construction is path
dependent and so the imaginary part of the action in effect modulates the measure.

The procedure outlined here has the additional desirable feature, whereby one can turn
on and turn off the constraints as needed. For instance, if we wish the system to evolve
under the constrained HamiltonianH1 = 1

2p2 +V (x)+ypTx+upTx+vπ for an interval
of time T1 with the two first-class constraints considered in this paper and subsequently to
evolve under an unconstrained Hamiltonian, say,H2 = 1

2p2 + V (x) for a periodT2 the
propagator is given by

〈α′′, β ′′; (T1 + T2)|α, β; 0〉 =
∫

d2α′ d2β ′

π2
〈α′′, β ′′| e−iT2H2|α′, β ′〉δ(α′∗β ′ − β ′∗α′)

×
〈
α′, β ′,

c1T + c5√
2

,
c3 + ic4√

2
,
c1 + ic2√

2

∣∣∣∣
×e−iT1H1

∣∣∣∣α, β, c5√
2
,
c3 + ic4√

2
,
c1 + ic2√

2

〉
(83)

where the factor〈α′′, β ′′| e−iT2H2|α′, β ′〉 in the integrand above is evaluated in the usual
manner by introducing resolutions of unity at each time slice, whereas the term〈

α′, β ′,
c1T + c5√

2
,
c3 + ic4√

2
,
c1 + ic2√

2
| e−iT1H1|α, β, c5√

2
,
c3 + ic4√

2
,
c1 + ic2√

2

〉
would be evaluated as discussed in section 3. The Dirac delta function in the integrand in
(83) ensures that at timet = T1 the system is on the constraint surface.

The ‘quantization recipe’ developed here and applied to a system with first-class
constraints will be extended to systems with second-class constraints in a forthcoming paper.
Also, our formalism may possibly be extended beyond the simple models considered here.
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Appendix

In this section we highlight the main features of path integrals constructed using bicoherent
states. For simplicity we consider a system without constraints and with a single degree of
freedom. To begin with, notice that the unit operator can be written as

1 = 12 =
∫

d2α

π
|α〉〈α|

∫
d2β

π
|β〉〈β|

=
∫

d2α d2β

π2
|α〉〈β| exp[− 1

2(|α|2 + |β|2)+ α∗β] (84)
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a weighted integral over bicoherent states. We will use this form of unity in our
construction of the path-integral representation of the propagator. Consider the Hamiltonian
H = p2/2 + V (x). In the construction of the propagator we use the normal-ordered
HamiltonianH =: H : when convenient. Thus, the propagator is given by

〈α′′| e−iTH|α′〉 =
∫
. . .

∫
〈α′′| e−iεH|αN 〉〈βN | e−iεH|αN−1〉 . . . 〈β1| e−iεH|α′〉

N∏
n=1

dµ′′
n

=
∫
. . .

∫ N∏
n=0

〈βn+1| e−iεH|αn〉
N∏
n=1

dµ′′
n (85)

where(N + 1)ε = T andn = 1, 2, . . . , N . In the equation above, the boundary conditions
are(α0, βN+1) = (α′, α′′) and the measure at each time slice is given by

dµ′′
n = d2αn d2βn

π2
exp[− 1

2(|αn|2 + |βn|2)+ α∗
nβn]. (86)

For smallε, we evaluate, to orderε, each term in the integrand in (85) as follows:

〈βn+1| e−iεH|αn〉 ' 〈βn+1|[1 − iεH]|αn〉 = 〈βn+1|αn〉[1 − iεHn+1,n] ' 〈βn+1|αn〉 e−iεHn+1,n

(87)

whereHn+1,n in the expression above is

Hn+1,n = 〈βn+1|H|αn〉
〈βn+1|αn〉 . (88)

Also, the overlap of coherent states at each time slice is

〈βn+1|αn〉 = exp[− 1
2(|βn+1|2 + |αn|2)+ β∗

n+1αn]. (89)

Thus, provided the integrals exist, the propagator is

〈α′′| e−iTH|α′〉 =
∫
. . .

∫ N∏
n=0

exp[− 1
2(|βn+1|2 + |αn|2)+ β∗

n+1αn − iεHn+1,n]
N∏
n=1

dµ′′
n. (90)

We notice that the factor exp[− 1
2(|βn+1|2 +|αn|2)], except at the endpoints, can be absorbed

in the measure. So, our propagator becomes

〈α′′| e−iTH|α′〉 = exp[− 1
2(|α′′|2 + |α′|2)]

∫
. . .

∫
exp

[ N∑
n=0

(β∗
n+1αn − iεHn+1,n)

] N∏
n=1

dµ′
n

(91)

where the measure at each time slice has changed slightly and is now given by

dµ′
n = d2αn d2βn

π2
exp[−(|αn|2 + |βn|2)+ α∗

nβn]. (92)

In our quest to express the right-hand side of (91) as a path integral, we rewrite part of the
exponent as follows:

N∑
n=0

β∗
n+1αn =

N∑
n=0

1
2[(β∗

n+1 − β∗
n)αn − β∗

n+1(αn+1 − αn)] +
N∑
n=0

1
2[β∗

nαn + β∗
n+1αn+1]. (93)

Notice that in the above equation the terms (β0, αN+1) have not been defined yet. The
factors containing these terms cancel and so they can take on arbitrary values. We assign
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them the values(β0, αN+1) = (α′, α′′). Also note the second sum in (93) can be absorbed
in the measure and so our propagator is finally written as

〈α′′| e−iTH|α′〉 =
∫
. . .

∫
exp

[ N∑
n=0

{ 1
2[(β∗

n+1 − β∗
n)αn − β∗

n+1(αn+1 − αn)] − iεHn1,n}
]

×
N∏
n=1

dµn (94)

where the measure at each slice is now

dµn = d2αn d2βn

π2
exp[−(|αn|2 + |βn|2)+ α∗

nβn + β∗
nαn]. (95)

Thus, in the limitN → ∞, ε → 0 with (N + 1)ε = T , the right-hand side of (94)
can be formally written as an integral over continuous and differentiable paths and so our
propagator is given by

〈α′′| e−iTH|α′〉 =
∫

exp

[
i
∫

{ i
2(β

∗α̇ − β̇∗α)− 〈H〉} dt

]
Dµ (96)

where

〈H〉 = 〈β|H|α〉
〈β|α〉 (97)

and the measure is

Dµ =
∏
n

{
d2αn d2βn

π2
exp[−(|αn|2 + |βn|2)+ α∗

nβn + β∗
nαn]

}
. (98)

Notice that the phase space action

S =
∫ {

i

2
(β∗α̇ − β̇∗α)− 〈H〉

}
dt (99)

obtained from the path-integral representation of the propagator constructed using bicoherent
states is complex.

In the case of the harmonic oscillator, for whichH = a†a, the action is

S =
∫ {

i

2
(β∗α̇ − β̇∗α)− β∗α

}
dt. (100)

Defining α = (q1 + ip1)/
√

2, β = (q2 + ip2)/
√

2, and inserting these definitions in the
action above we obtain

S =
∫

{ 1
4(p2q̇1 − q2ṗ1 + p1q̇2 − q1ṗ2)− 1

2(q2q1 + p2p1)} dt

+i
∫

{ 1
4(q2q̇1 + p2ṗ1 − q1q̇2 − p1ṗ2)− (q2p1 − p2q1)} dt. (101)

In this paper, we identify the real part of the action obtained from the bicoherent state
construction, with the standard classical phase space action. We see that for the example
of the harmonic oscillator the action obtained from our construction using bicoherent states
has twice as many labels as the usual action. The doubling of labels and the fact that the
action is complex are two general features of path integrals constructed using bicoherent
states.



Bicoherent states and first-class constraints 2243

References

[1] Dirac P A M 1964Lectures on Quantum Mechanics(New York: Academic)
[2] Fradkin E S and Vilkovisky G A 1975Phys. Lett.55B 224
[3] Batalin I A and Vilkovisky G A 1977Phys. Lett.69B 309
[4] Batalin I A and Fradkin E S 1986Phys. Lett.180B 157
[5] Becchi C, Rouet A and Stora R 1975Commun. Math. Phys.42 127
[6] Henneaux M 1985Phys. Rep.126 1
[7] Halliwell J J 1988Phys. Rev.D 38 2468

See also Shabanov S V 1993Phys. Lett.318B 323; 1991Phys. Lett.255B 398
[8] Prokhorov L V 1982 Sov. J. Nucl. Phys.35 1
[9] Prokhorov L V and Shabanov S V 1991Sov. Phys. Usp.34 2

[10] Henneaux M and Teitelboim C 1992Quantization of Gauge Systems(Princeton, NJ: Princeton University
Press)

[11] Klauder J R and Skagerstam B S 1985Coherent States(Singapore: World Scientific)
[12] Glauber R J 1963Phys. Rev.131 2766


